\$

214/744-1641

ICF TECHNOLOGY INCORPORATED

TO: David Wineman, Region VI RPO

THRU: K. H. Malone Jr., FITOM ()

THRU: Tim Hall, AFITOM AH.

FROM: Ravinder Joseph, FTT Environmental Engineer

DATE: May 20, 1988

SUBJECT: Sampling Inspection At Air Center, Oklahoma City, OK (OKD 980750319)

TDD # F-6-8711-04
PAN NO: FOKO270SBF

During the week of January 4, 1988, a six member FIT team (Ravinder Joseph, John Jones, Keith Wheeler, Jeff Robinson, Steve Cowan, and Heather Schijf) conducted soil/sediment, subsurface soil and surface water sampling at Air Center, OK. The site is located at 7300 NW (Northwest) 63rd, Wiley Post Airport in Oklahoma City. The site was formerly used as an aircraft stripping and painting facility. Waste generated from the stripping process was allowed to drain into an unlined lagoon where it then entered a drainage ditch and eventually flowed into a residential pond enclosed by the Woodlake residential district. The lagoon was later filled. FIT discovered the presence of two underground storage tanks on-site during a site recon on July 23, 1987. tanks were used to hold stripped paint sludge. When full, the tanks were pumped dry into a tanker truck and transported to a disposer in Kansas City. The tanks were dry at closure and later pumped dry again by Wiley Post authorities at an undetermined date. Sampling at Air Center was conducted to detect the presence (if any) of heavy metals such as chromium & lead, and organics such as methylene chloride and phenols.

One background surface soil sample at one foot and another background subsurface soil sample at six feet were collected on-site. One off-site background surface soil sample at one foot was also collected.

Off=site_sediment/water_samples were taken to determine if there is migration of contaminants into Weedlake Pond. Drinking water wells upgradient and downgradient of Air Center were also sampled for possible contamination. The upgradient well is located three miles to the northwest of the site. The other drinking water wells are to the southwest of the site within half a mile and three miles from Air Center.

All surface soil and sediment samples on-site were collected with stainless steel trowels which had been deconned with TSP and detergent and rinsed with deionized water. Trowels used at a particular location were not reused again. Subsurface soil samples were taken at a depth of five to six feet. A mobile power drill was used to drill to the required depth. The subsurface samples were collected using a two inch auger and then transferred with a trowel into

P . 4 50 3/63

the sample bottles. Water samples from the underground storage tank on-site were collected using a two inch stainless steel bailer which had been previously deconned with TSP and detergent and then rinsed with deionized water. Surface water samples from the drainage area and pond were collected with a stainless steel beaker which had been deconned in the manner stated above. The surface water samples off-site, from Woodlake Pond, were taken using a stainless steel beaker at the end of an extension pole. All drinking water well samples were collected directly into the sample bottle from spigots or from connections close to the well. The wells were purged by allowing them to flow till pH and conductivity measurements stabilized. The results of field measurements of pH and conductivity are presented in Table VI.

Weather during the sampling mission was cold with temperatures around 21°F. It snowed during the days the on-site samples were taken. There was about one foot of snow accumulation on the ground. Subsurface drilling was monitored with an HNu. HNu readings as high as 50 ppm were recorded down the hole. However, since the meter readings were erratic because of weather conditions, no definite conclusions could be drawn from them. Surface water samples and sediment samples along the drainage path were taken after breaking through an ice layer. This had to be done both on-site and off-site at Woodlake Pond.

The breakdown of the sampling is as follows:

Surface Soil/Sediment	On-Site	13	samples	1 Duplicate	
Sub Surface Soil	On-Site	4	samples	1 Duplicate	QA/QC
Surface Water	On-Site	2	samples	1 Duplicate	QA/QC
Soil/Sediment	Off-Site	10	samples	1 Duplicate	QA/QC
Surface Water	Off-Site	1	sample	-	QA/QC
Drinking Water Wells	Off-Site	5	samples	1 Duplicate	QA/QC
Field Blank		1	sample	-	-,-

Summary Of Analytical Results

(Refer to Tables I, II, IIA, IV, and V) The analytical results indicate that for many contaminants, especially organics, the concentration values had J Flags next to them. J Flags indicate that the sample concentrations are to be only considered as estimates. In the discussion given below, concentration values for contaminants without J Flags next to them indicate true concentrations.

Organics

Phenol was not detected in the one-foot and six-foot background soil samples on-site. It was, however, detected at concentrations of 46J (ppb) and 62J (ppb) (duplicate) in water from the underground storage tank on-site. These tanks were at one time used to store stripper sludge from aircraft painting operations. Phenol was also detected in soil at the mouth of the drainage ditch (Map Location 20) at concentrations of 2200J (ppb) and 3500J (ppb). Phenol at 10,000J (ppb) was also found at the mouth of the drainage ditch opening into the upper pond (map location 13). Phenol was also detected at 1200J (ppb) off-site in the background soil sample collected at Woodlake Pond. Even though this was found only in the background sample, on the bank of the lake (map location 24), it is possible to account for its presence if the pond had overflowed its banks at some point in time or the lake had been dredged

and the sediment piled up on the banks. However, since these are only estimates (J Flag), there is uncertainty associated with these values.

Samples taken from the underground storage tank indicate xylene at 41J (ppb) and 47J (ppb) and 2 methyl naphthalene at 35J (ppb) and 45J (ppb). Xylene was not found in the on-site background soil samples.

Bis (2-Ethyl hexyl phthalate) at 110 ppb (J Flag) and 220 ppb (J Flag) was found near the concrete drainage pipe on-site (map location 20). This compound was also found in the City of Bethany municipal drinking water well #23 (map location 28) at concentrations of 28 ppb and 9 ppb (duplicate). This well is located three quarters of a mile west of the site. However, since this is a common laboratory contaminant no significance can be attached to these values.

Inorganics

Arsenic was detected (5 ppb) in water found in one of the underground storage tanks. It was detected in the background on-site soil sample in concentrations comparable to those found in soil elsewhere on the site. These are only estimates (J Flag). Arsenic was also detected at 4 ppb in the City of Bethany municipal well #21 located one and a half miles west of the site. However, this is much lower than the primary drinking water standard of 50 ppb.

Chromium was not found in the underground storage tank but was found in the background soil samples at the one foot and six feet levels (9.8J (ppm) and 18.3J (ppm). However, these are only estimates. It was also detected in water leaving the site through the drainage ditch (28 ppb). It was detected off-site at map-locations 1,2,3,4,5,6,7,8, & 9 in-concentrations ranging from 12.9 ppm-to-41.1 ppm. However, these are again only estimates. Chromium was also found in the off-site background sample at 28 ppm (J Flag) and in the City of Bethany municipal drinking water well #21 at 15 ppb (Primary drinking water standard: 50 ppb).

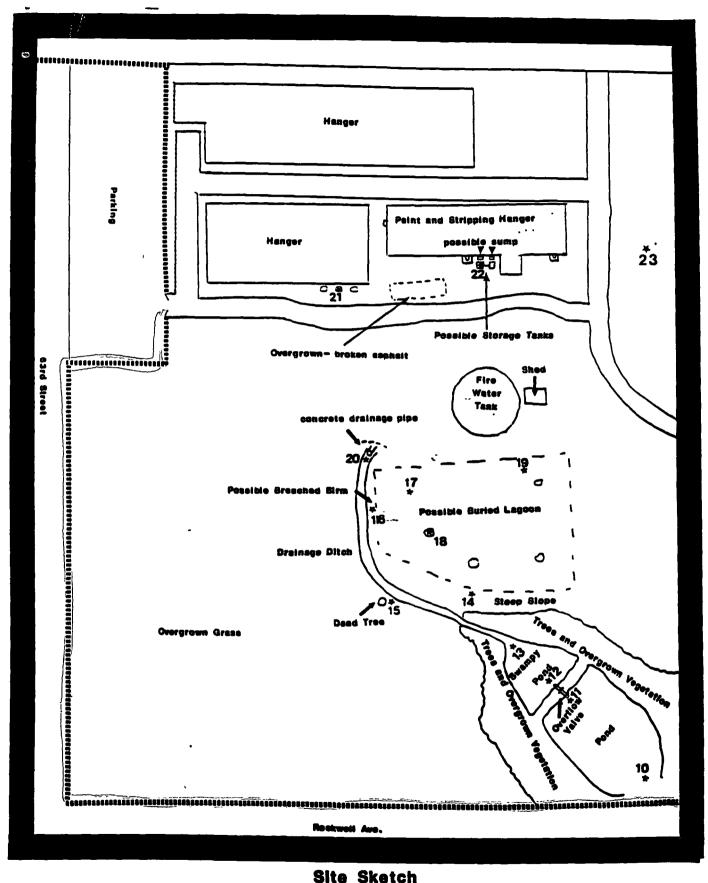
Lead was detected in the background soil samples on-site at concentrations of 9.9 and 6.9 ppm. It was also found in all the soil samples off-site in ppm levels ranging from 6.5 ppm to 33 ppm. The background off-site soil sample had a concentration of 22 ppm. The concentrations of lead in drinking water wells (City of Bethany well #21 & #23 - 176 ppb and 66 ppb) are significantly higher than the primary drinking water standard of 50 ppb.

The on-site background soil sample contained nickel (11.6 ppm and 27.3 ppm) which was also detected at map locations 18, 14, 20, & 15 in comparable concentrations. It was found in all the sediment samples, including the background soil at concentrations ranging from 12.9 to 39.5 ppm. Nickel was detected at 31 ppb in the underground storage tank.

Zinc was found in the on-site and background soil samples at depths of one foot and 6 feet (22.8 ppm & 35 ppm) and in the off-site sample at Woodlake Pond (55.8 ppm). Zinc was detected in water in the underground storage tank at 18 ppb & 25 ppb and was also in all the soil and water samples on-site. Significantly higher concentrations than background were found at map locations 20, 13, 12 & 11. Zinc was also found in the water at map location

10 (27 ppb) and in all the off-site soil samples. It also was present at a significantly higher concentration in municipal well #23 (338 ppb), and in the background well at a concentration of 43 ppb.

Cyanide was not detected in background samples but was detected in the water in the underground storage tank (12 ppb & 11 ppb) and in soil at map locations 20 (4.7 & 3 ppb), 15 (5 ppb) and 13 (78.2 ppb). These values are considered significant since it was not found in the background on-site soil samples. Cyanide was not detected off-site.


The results of the sampling mission appear to indicate the presence of phenols and cyanides at the mouth of the drainage ditch on-site (map location 20) and further downstream at the on-site pond (map location 13). Phenol and cyanide were not detected in the background soil samples on-site but were present in the underground storage tank. Cyanide was also present at map location 15. Phenol was also found off-site at map location 24. Even though the concentration values associated with phenol are only estimates (J Flags), these estimates are considered to be biased low and as such do indicate the presence of these components at the above location. Both phenols and cyanides are commonly used in solvents, metal cleaning fluids and plating baths. These fluids are commonly used in activities with which Air Center was involved.

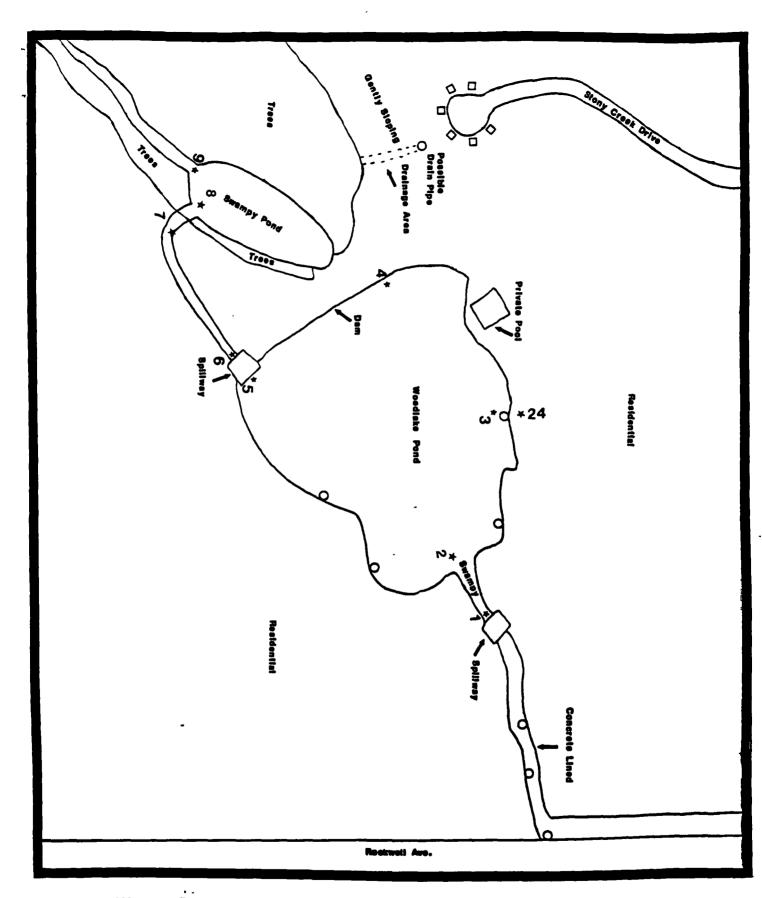
FIT recommends that the City of Bethany's water superintendent and the Oklahoma State Department of Health be informed about the presence of lead in the City of Bethany municipal well no. 21 and well no. 23. The concentration of lead in these wells (176 ppb and 66 ppb) are above the primary drinking water standard of 50 ppb.

FTT also recommends RCRA and state UST program be informed of the underground storage tanks on-site.

Off-site Woodlake Pond Samples

Sample No.	Map Location No.	Location
1	1 a	Sediment, northeastern end of spillway leading into Woodlake Pond from Air Center.
2	1b	Water, northeastern end of spillway leading into Woodlake Pond from Air Center. QAQC, extra volume.
3	2	Sediment, mouth of drainage ditch leading from Air Center as it enters Woodlake Pond.
4	3	Sediment, SE end of pond close to drainage inlet.
5 .	4	Sediment, NE edge of pond.
6	4	Duplicate, sediment, NE edge of pond.
7	5	Sediment, SW side of spillway leading from Woodlake Pond. QAQC.
8	6	Sediment, NE side of spillway leading from Woodlake Pond.
9	7	Sediment, along curvature in drainage ditch as it leaves Woodlake Pond.
10	8	Sediment, mouth of drainage ditch as it enters the swampy area.
11	9	Sediment, mouth of drainage ditch as it leaves the swampy area.
12	24	1 foot deep soil on bank just south of sample # 4.

O Spots of Dead Vegetation

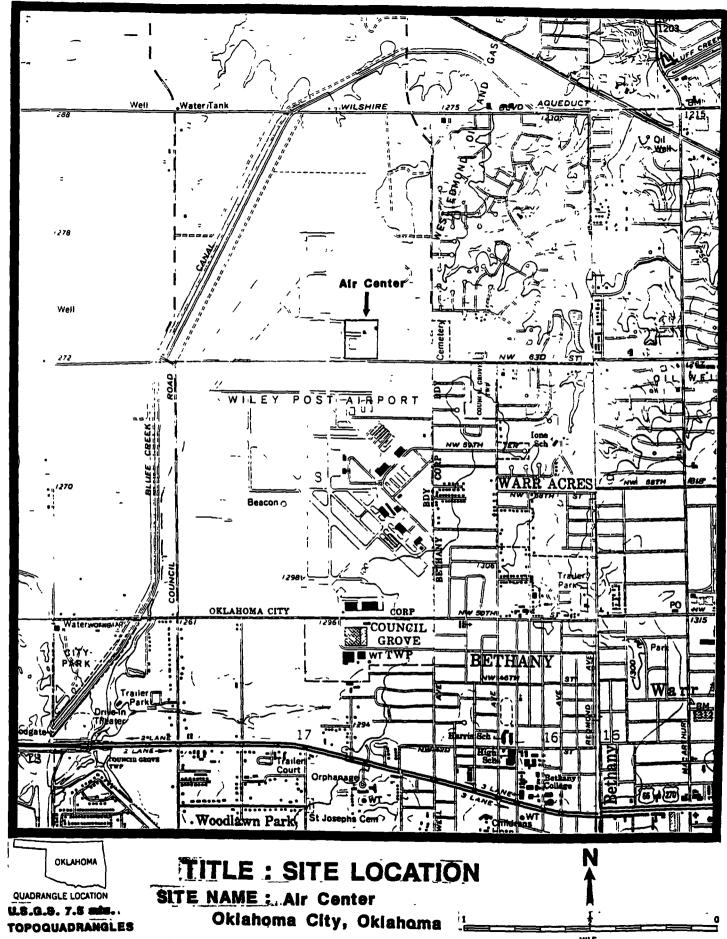

tess Fence Line

2 + Possible Sampling Points

Air Center Inc.
Oklahoma City, Oklahoma
OKD980750319
TDD# F-6-8707-11
Site in pection: 7-23-87

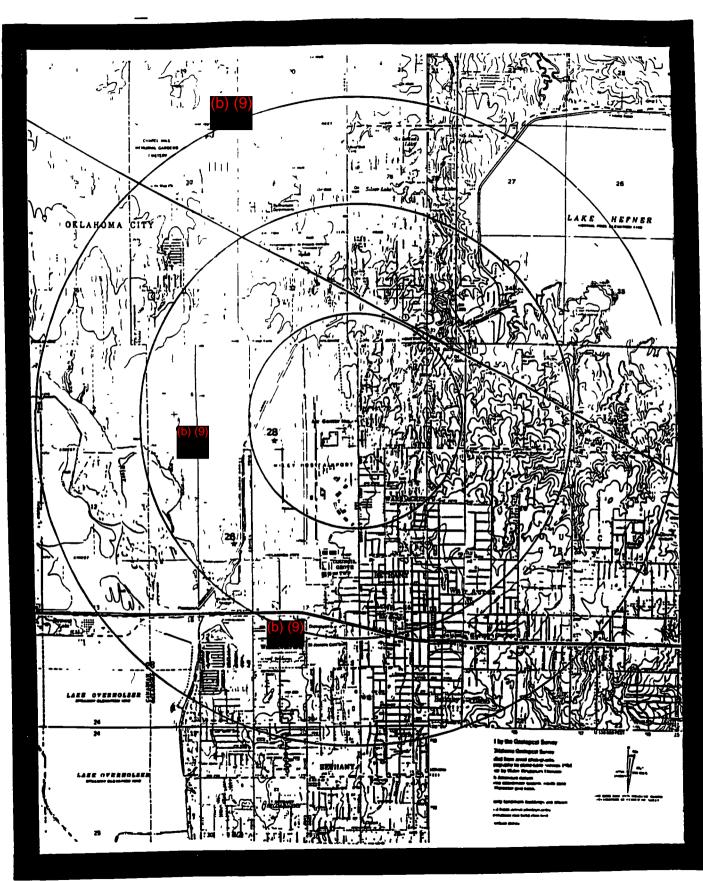
 $N \longrightarrow$

Not To Scale


Water Course for Drainage Ditch after leaving Air Center OKD980750319
TDD# F-6-8707-11

O Drainage inlets from Surrounding Streets

* Proposed 8: pling Points


Not To Sc |

N

TDD NO.: F-6-8707-11

CONTOUR INTERVAL 10 FEET NATIONAL GEODETIC VERTICAL DATUM OF 1929

* WELL LOCATIONS

On-Site Samples

Sample No.	Map Location No.	Location
13	10	Soil, (sediment) 1 ft. depth, NE corner of site, where pond leaves site through drainage ditch.
14	10	Water, NE corner of site, where pond leaves site through drainage ditch.
15	11	Soil, (sediment) 1 ft. depth, NE side of overflow valve in lower pond.
16	12	Soil, (sediment) 1 ft. depth, SW side of overflow valve in upper pond.
17	13	Soil, (sediment) 1 ft. depth, inlet into the upper pond (swampy area).
18	14	Soil, 1 ft. depth, SE slope of lagoon into drainage ditch.
19	15	Soil, 1 ft. depth, on south east side of drainage ditch near dead tree.
20	16	Soil, 1 ft. depth, depression along the southeast edge of lagoon. (possible breech in birm)
21	17	Soil, 1 ft. depth, SW corner of lagoon.
22	17	Soil, 6 ft. depth, SW corner of lagoon. QAQC.
23	18	Soil, 1 ft. depth, south central circular patch of dead vegetation.
24	18	Soil, 6 ft. depth, south central circular patch of dead vegetation.
25	18	Duplicate, soil, 6 ft. depth, south central circular patch of dead vegetation.
,2 6	19	Soil, 1 ft depth, NW corner of lagoon.
27	19	Soil, 6 ft, depth, NW corner of lagoon.
28	20	Soil, 1 ft. depth, in drainage ditch as concrete pipe enters ditch.

On-Site Sampling (con't)

Sample No.	Map Location No.	Location
29	20	Duplicate, soil, 1 ft. depth, in drainage ditch as concrete pipe enters ditch.
30	21	Soil, 1 ft. depth, circular patch of dead vegetation to the east of the southeast hanger.
31	22	Water, underground storage tank.
32	22	Duplicate, water, underground storage tank.
33	23	Soil, 1 ft. depth, north of paint stripping hanger on the north side of the dirt road.
34 .	23	Soil, 6 ft. depth, north of paint stripping hanger on the north side of the dirt road.

Residential Well Sampling

Sample No.	Map Location No.	<u>Location</u>
(b) (9)		DW, (b) (6)
36	26	DW, City of Bethany, Well # 21, QAQC, extra volume.
(b) (9)		Dw, (b) (6)
38	28	DW, City of Bethany, Well # 23
39	28	Duplicate, DW, City of Bethany, Well # 23.
(b) (9)		DW, (b) (6)
41	-	Field Blank

ON - SITE

TABLE I

UN - SITE				IABLE 1			
MAP LOCATION #	DESCRIPTION	MAJOR COMPOU	NDS DETECTE	ED (ppb) (FOR CO	MPLETE LIST REFE	R TO ORGANIC ANA	ALYSIS SUMMARY)
	1	İ	1	2 Methyl		Benzyl Butyl	i
	i i	<u>Phenol</u>	Xylene	<u>Naphthalene</u>	Hexyl Pthalate)	•	! !
23	 Background soil 1	<u>Frienot</u> •••	<u>Ayterie</u>	Naprinatere			!
۵	•		! !	•••	ļ ···	ļ 	! -
	soil 6'		!	ļ	l	j	
	<u> </u>		1	ļ		1	1
22	Underground storage	46J	41J	35J		•••	Ì
	tank (water)	i	i i		i	•	1
	I can (Nacci)		! !		1	!	!
	l	45.	l		!	!	!
22	Underground storage	62 J	47J	42J	•••	•••	į
	tank (water-dup)		1				
	1		t i		1	1	1
21	Soil		i i		i		i i
	1			!	1	! !	f 1
47	l Carlo		!		1		!
17	Soil 1'					•••	l
			l	1/5			
17	Soil 6'		1		•••	•••	Ì
	Ì		İ		i		İ
18	Soil 1	•••					! !
.0	1						!
4-			!!!		<u> </u>		!
18	Soil 6'	•••	l l		•••		j
]		l 1		1		1
18	Soil 6'		l Ì	•••	1	•••	İ
	(dup)		ii		1		i
	l (amb) i		1 !		1		[•
			! !		!		
19	Soil 1'	•••	l l				
	i		l		1		İ
19	Soil 6'	•••		•••		•••	
	i		iii		i		<u>'</u>
14	Soil 1º	•••	! ! 	•••	1	1	! !
144	1 3011		! ''' !		· · · ·	•••	
			1		ļ		
20	Soil 1º	2700J			j 150J	110J	
]	1 1		I		1
20	Soil 1'	3500J	i i	•••	220J	•••	i
	•••••		, . , .		1 2200	İ	
			! !		!		
16	Soil 1'	•••			1	***	
	[[]		1		
15	Soi l 1'	•	l I	•••	1		1
	i				, 1		
13	Soil	10000ป	 •••		! 		1 1
1.5	5011	100003	ı		•••		1
			i [I		1
12	Soil						
1		1	[]		I	!	1
11	Soil		I i		· •••	•••	
, ,) 		1	 	1
40			! !		1		
10	Soil	•••		•••	•••		

MAP LOCATION #	DESCRIPTION	MAJOR COM	POUNDS DETECTED (ppb)	(FOR COMPLETE LIS	ST REFER TO ORGANIC ANA	LYSIS SUMMARY)				
	 	 <u>Benzene</u>	 	4-methyl-4- Pentene-2-One	4,8,12-Trimethyl 3-7 11 <u>Tridecatrienenitrile</u>	Molecular <u>Sulfur</u>	 1,2 <u>Benzenediol</u>	 <u>Fluoranthene</u>	2 Hydroxy benzoic acid	Benzo Anthracene
24	 Soil 1'				430J	340J	830J 	! !	 1300J	
1a	 Water 1º		16J	18J			 :	[<u> </u> 	
2	 Soil 1'				490J] [
3	 Soil 1'					1000J	 	1 !	 	
4	 Soil 1º dup	! 9.j 8.j	 		300J 300J	200J 270J	 	 55001 	 	 570J
5	Soil 1º		 		 590J		 	 	 	
6	Soil 1'	8J					 	! !		
7	Soil 1'	9J			430J		 	! !	 	
8	Soil 1'	11J			680J	460J] 	! !	
9	 Soil 1'	! !				2100J	 	 	i i !	

•

							
MAP LOCATION #	I <u>Description</u>	MAJOR COMP	OUNDS DETEC	TED (ppb) (Continued)		
	1	•		1	[1,2,3,4 Tetrahdro]	1	
	l 1	1	1		1,6,-Dimethyl	1	
	 	t	1		-4(1-Methylethyl)	1	2 Hydroxy
	!	<u>Chrysene</u>	<u>Pyrene</u>	<u>Hexane</u>	<u>Napthalene</u>	Phenol	Cyclo hexane
24	 Soil 1' 		 	 		1200J	1200
4	Soil 1' Glup)	770J	1700J 	; 			
5			! !	6J			
7	 	 	 	! 	360J		
			1	!		į	
			1 	1 1	}		

,

ON - SITE TABLE III

Soi	l -	DO	m:
•••			

MAP LOCATION	DESCRIPTION	MAJOR CLA	SSES OF (FO	R COMPLETE I	LIST REFE	R TO INORG	ANIC ANALYSI	S SUMMAR	Y) Water - ppb
	i —————	i		I	1	l	1	i	1
	1	<u>Arsenic</u>	Cadmium	<u>Chromium</u>	Lead	<u>Nickel</u>	<u>Vanadium</u>	<u>Zinc</u>	<u>Cyanide</u>
	!			!	1	!	ļ	1	
23	•	' 7J		9.81	9.9	11.6	4.2	22.8	! ···
	6	16.5J		18.3j	6.9	27.3	25.7J	35	
22	 Underground (water)	l l 5	1	[1 31	f I	 18	l 12
LL	Storage Tank (water	1 5		 •••	! 	, J. !	! •••	25	11
	dup)	ì	i		i	i I	i	i	 I
	j	i	i	i	i	į,	i	i	İ
21	Soil 1	1 8.4J	l ···	l			18.2	24.9	•••
	1	1	1	1	1	1	!	1	l
17	•	9.1J	!	ļ	!		20	21	!
	1 6	8.1J					22.7	23.8	
18	l Soil 1	 		! •••	 	! 	l 18.5	1 21.1	
10	1 6	•	1] 	i - I	ı 5.1J	20.8	19	
	(dup) 6	1	ì		, 	51.0	22.1	i ''	i I
	i	i	i	i	İ	i ·	i	į	i
19	Soil 1	9.8J	· · · ·	ļ ···		j	28.7	28.9	j
	1 6	· •••					25.8		•••
	!		1	1	!		!	!	!
14	Soil 1	7.80			!	7.2J	20.6	22.3	
20	l] Soil 1	i ' 3.4J	 	 	 	 14.6J	l 20.3]] 59.1	 4.7
20	•	5.4J			 •••	17.2J	22.3]	, 4., 3
	1	5110	i i	! 	! 	1	1	i I	, <u> </u>
16	Soil 1	10.4J	i	i	j	i	20	24.4	i
	İ	İ	i	1	İ	ĺ	İ	İ	İ
15	Soil 1	' 12J	1.2J			15.3J	22.3	31.9	j 5
		1	!	!	l	<u>l</u>	1	<u> </u>	1
13	Soil 1	' 12J	4.43	!		•••	26.8	75.3	78.2
12	l ¦ Soil 1	 	 •••	 •••	 •••	 	l 19.6	 33.7	
16	r 3011 1	'-*'	1	1	I I	1 1	ا ا ا	, <i>33.1</i> 	i I
11	ı Soil 1	' 8.8J	···	! 	' •••		16.7	39.5	
	İ	i	i	i I	İ	i		i	i
10	Water	j	···	27	i	i	···	27	j
	1	1	}	1	}	1	{	1	ſ

Soil - pom:

MAP LOCATION	DESCRIPTION	MAJOR	CLASSES OF	(FOR CO	MPLETE LIST	REFER TO I	NORGANIC	ANALYSIS SUMMARY)	Water - ppb
! !		 <u>Arsenic</u>	<u>Chromium</u>	Lead	 <u>Nickel</u>	<u>Vanadium</u>	 <u>Zinc</u>	Cyanide	
24	(Background soil)	! •7,J⊃ !	 28Ĵ <i>□</i> 	 <u><2</u> 2) 	 <u>@</u> 25	(29.64)	ا <55<u>ّ.</u>8 ح ا		
1	Soil 1'	3.5J	15.3J	33.1	13.9	16J	32	· ·	
1	Water 1'	 		4.2	 	10.7	 51.7		_
2	Soil 1'	5.10J	16.7J	8.5	14.5	21.1J	27.8	•••	
3	Soil 1'	 9.3J 	 26.4J	 6.8 	 30.4 	32.7J	 51.5 		
4	Soil 1	6.41	32.3J	•	39.5	26.7J	66.3		
į	(dup)	5.3J	41.1J	9.9	39.4	42J	72.5 	•••	
5	Soil 1	9.41	20.6J	12.3	20	27.6	32	•••	
6	Çşōi,I> 1∙	 @>	₹12.9>	 (6.5 3 	 ©12.7 5 	46.4J _k	 <26.8 	•••	
7	Soil 1	11.9J	32.7J	18.3	31.2	34.5J	62.3	•••	
8	Soil 1'	 10.2J	 17.8J	 13.6 	 17.6	30.9J	 41.4		
(P)	Soil> 11	<1117>	l 	 :25. 6> 	 <u>-25:6</u>	⊂27.76J	47.:2>		
		i 1] 	 	 	!			

TABLE V

Drinking Water Wells

Map Location	Bis (2-Ethyl Hexyl) <u>Phthalate</u>	<u>Cadmium</u>	<u>Vanadium</u>	Arsenic	<u>Zinc</u>	<u>Chromium</u>	<u>Lead</u>
25					49ppb		
26			48ppb	17ppb	43 ppb	15ppb	176ppb
27					133 ppb		
28 dup	9ppb 28ppb	 19ppb		4ppb 	73 ppb		 66ppb
29 background			_	6ppb	120 pplo		

TABLE VI

pH and Conductivity Measurements

Map Location	<u>pH</u>	Conductivity	<u>Temperature</u>
22 (underground storage tank)	11.94	1100 umhos	18°C
10	7.66	250 umhos	14°C
1	7.60	270 umhos	16°C
25	7.34	910 umhos	11°C
26	7.06	1100 umhos	10°C
27	7.00	725 umhos	12.5°C
28	7.30	500 umhos	12°C
29	7.20	1650 umhos	11.5°C

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VI EPA HOUSTON LABORATORY 6608 HORNWOOD DRIVE HOUSTON, TX 77074

QAZQC COMPLIANCE REVIEW OF CONTRACT COMPLIANCE SCREENING (CCS) RESUBMITTED DATA

DATE:	4/25/88	
TO:	GT.	CASE #8811
	90 HANK THOMPSON (GE-SH)	CASE #8811
FROM:	H. KREIGH (ESAT)	SITE NAME AN CONTER
	Robert G	·
ACTION:	The resubmitted information has no erate into the data package.	effect on the data, please incorpo-
	Yes No	(see comment section)
	LABORATORY RESPONSE TO RO	
COMMENT	BNA FRANCIS WORD RO-GARA	com on 3/10/88 For Sup Gs
FG.	-255 NO FG-264 NO TO	
<u>/</u> ~	Grom Sayle (THE 'U" WAS ON	miton from 4-NITAO HONOLAND
5171	6- Fb-257. THE A42 SURBLA	No ROWONGS WOND ACCORTAGE
	BOM REAMLY ZON Snylows THE DA	
	THE BOLING TIME WAS A	
	ر 	A
~~~~~·		AJP 4/25/28
	·	
*	12 1	

# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VI EPA HOUSTON LABORATORY 6608 HORNWOOD DRIVE HOUSTON, TX 77074

# 9A/9C COMPLIANCE REVIEW OF CONTRACT COMPLIANCE SCREENING (CCS) RESUBMITTED DATA

DATE:	4/4/88	•
TO:	$\mathcal{L}_{\mathcal{L}}$	CASE #
	% HANK Thompson (64	E-5H) SAS #
from:	4. KREIGH (ESAT)	SITE NAME AIR CONTER
	REGION 6	
ACTION	: The resubmitted informati rate into the data packag	ion has no effect on the data, please incorpo- ge.
	Yes	No (see comment section)
COMMEN	T: ONE CORRECTED	Dolvonsslø.
		JA JA 1/11/88
 / !	166	

ru 4/8/88

Daga	1	۰£	2	
Page	/	ot	٠,	

### **COVER SHEET**

## LABORATORY RESPONSE TO RESULTS OF CONTRACT COMPLIANCE SCREENING (CCS)

Response To: (Check	one)O	rgancis CCS
	In	norganics CCS
Response materials se	nt to Organics CCS should be ser	nt to the attention of Doris Ling, SMO.
Response materials se	nt to Inorganics CCS should be s	ent to the attention of Sa'ad Masri, SMO.
Laboratory Name	ETO TTOXICON	Response Date 04/07/88
		Date Screening Results Received at Laboratory 04/04/88
EPA Contract No.	68-01-7148	•
Case No.	8811	
SDG No.	8811	<del></del>
Sample Nos.*	FG243	
		·····

This form is used to identify materials sent in response to results of Contract Compliance Screening (CCS). A separate form must accompany the response for each Case.

Please indicate (on the attached continuation form) which fractions and/or which criteria correspond with your resubmission. Response materials sent to CCS should also be copied to the Region and to EMSL/LV, each with this blue Cover Sheet.

^{*}Only list sample numbers that require reconciliation.

# ORGANICS LABORATORY RESPONSE TO RESULTS OF CCS (continued)

Sample	Fraction	Criterion	Comments
F6243	BNA	В	Chronological order corrected on John I
F6249		E	The "R" here is believed to be a typographical
			brook. There is no explanation of a problem
			Other than noncompliance is the previously
			received CCS. Gurther, there is no explanation
		V	I've. There is no explanation of a problem other than noncompliance in the previously section of configuration of problem of page 1 of the resolution.
<b> </b>			
<del>  </del>			
<del>  </del>			<del></del>
<b></b>			
<del>                                     </del>			

# GC/MS TUNING AND MASS CALIBRATION

Page 3 of 3

A in	,	Deca	ıfluorotr	iphenylpho	sphine (DFTPP)	)	U
03/14/8	1 8 Case 1	40. <del>8770</del> 8811	Contractor	ETC/Toxico	n Contra	oct No. 68-01-	7148
	Instru	ment ID A(FINUAL)	Date	26-88	Time _	·0823	•••
					: <u>Maureen</u> I	Shields	1
	m/e	ION ABUNDANCE CRIT			%RELATIVE ABUNDA		
	51	30.0 - 60.0% of mass 19	8		40.1		
	68	less than 2.0% of mass 6	9		6.00		(O) ¹

51	30.0 - 60.0% of mass 198	40.1	
68	less than 2.0% of mass 69	6.00	(0)
69	mass 69 relative abundance	44.0	
70	less than 2.0% of mass 69	0,00	( <i>o</i> )¹
127	40,0 - 60,0% of mass 198	48 5	
197	less than 1.0% of mass 198	0.00	
198	base peak, 100% relative abundance	100	
199	5.0 9.0% of mass 198	5.88	
275	10.0 - 30.0% of mass 198	19.5	
365	greater than 1,00% of mass 198	1.42	
441	present, but less than mass 443	7.36	
442	greater than 40.0% of mass 198	65.7	
443	17.0 - 23.0% of mass 442	11.2	(17.1)2

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

¹Value in parenthesis is % mass 69. ²Value in parenthesis is % mass 442.

SAMPLE ID	LAB ID	DATE OF ANALYSIS	TIME OF ANALYSIS
0/80pmSVStd.	55012688A	1-26-88	0841
HBI	5V4279MB1		0934
6344	50427902		1124
5246	· 5V427903		1221
6247	51427404		1313
4258	· 5V427408		1407
FG243	SV427935	01/26/88	1027
		•	
		0 1	Vo T
	Klsubmitted data	Klaubnill	ed alle B
	emi.	1 601/14	
	& Nesterman	le Le VISIL A	man
	04/06/88		
			881106201
	Form V		<u> </u>

# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VI EPA HOUSTON LABORATORY 6608 HORNWOOD DRIVE HOUSTON, TX 77074

/ - <del>- - -</del> - -

## QA/QC COMPLIANCE REVIEW OF CONTRACT COMPLIANCE SCREENING (CCS) RESUBMITTED DATA

DATE:	3/23/88		
TO:	Go Hank Thompson (GE-SH)	CASE #	_8811
FROM:	H. KREIGH (ESAT) REGION VI	SITE NAME	AIR CENTER
ACTION:	,	effect on the dat	
	BNA Suples F-6-255 Ans 1	Fb-264 Ass	Rosvant
_			3/23/88
	·		

HIC

Page		of	<u>3</u>
------	--	----	----------

#### **COVER SHEET**

## LABORATORY RESPONSE TO RESULTS OF CONTRACT COMPLIANCE SCREENING (CCS)

Response To: (Check	one)	Organcis CCS
		Inorganics CCS
Response materials ser	nt to Organics CCS should be	sent to the attention of Doris Ling, SMO.
Response materials ser	nt to Inorganics CCS should be	e sent to the attention of Sa'ad Masri, SMO.
Laboratory Name	ETC/TOXICON	Response Date 03/21/88
		Date Screening Results Received at Laboratory 03/14/88
EPA Contract No.	<u> 68-01-7148</u>	
Case No.	8811	
SDG No.	8811	
Sample Nos.*	<u>FG243</u> FG255	
	FG264	

This form is used to identify materials sent in response to results of Contract Compliance Screening (CCS). A separate form must accompany the response for each Case.

Please indicate (on the attached continuation form) which fractions and/or which criteria correspond with your resubmission. Response materials sent to CCS should also be copied to the Region and to EMSL/LV, each with this blue Cover Sheet.

^{*}Only list sample numbers that require reconciliation.

# ORGANICS LABORATORY RESPONSE TO RESULTS OF CCS (continued)

Şample	Fraction	Criterion	· ·
FG243	BNA	В	Sample added to Form I; Form resubmitted There is no apparent explaination for the low surrogate recoveries Further, there is no explaination as to why this sample was neither reinjected or rextracted and reanalyzed. Sample to be reanalyzed as requested asliols by EPA VI
1625	BNA	F	There is no apparent explaination for the low
			surrogate recoveries Further, there is no explaination
			as to why this sample was neither reinjected or
			rextracted and reanalyzed. Sample to be reanalyzed
<u> </u>		V	as requested 03/10/88 by EPA VI
F6264	V	F	Same 1 as F6255
,			
			<del></del>

1. ... 145P

# GC/MS TUNING AND MASS CALIBRATION Decafluorotriphenylphosphine (DFTPP)

Dinel	Decamorotriphenyiphosphine (DF1PP)								
(1111) 13 14 88 Case	No. 8770 881/ Contractor ETC/Tox	icon Contract No. 68-01-7148							
	A(FINNAI) Date 1-26-88	Time 7823							
Lab -	DFO12688A Data Release Authorized	By: Maureen T Shields							
m/e	ION ABUNDANCE CRITERIA	*RELATIVE ABUNDANCE							
51	30.0 - 60.0% of mass 198	40.1							
68	less than 2.0% of mass 69	6.00							
69	mass 69 relative abundance	44.0							
70	less than 2.0% of mass 69	0,00 (0)1							
127	40.0 - 60.0% of mass 198	48 5							
197	less than 1.0% of mass 198	0 00							
198	base peak, 100% relative abundance	100							
199	5.0 9.0% of mass 198	5.88							
275	10.0 - 30.0% of mass 198	19.5							
365	greater than 1.00% of mass 198	1,42							
441	present, but less than mass 443	7.36							
442	greater than 40.0% of mass 198	65.7							
443	17.0 - 23.0% of mass 442	11.2 (17.1)2							

THIS PERFORMANCE TUNE APPLIES TO THE FOLLOWING SAMPLES, BLANKS AND STANDARDS.

¹Value in parenthesis is % mass 69. ²Value in parenthesis is % mass 442.

MPLES, BLANKS AND S	STANDARDS.	² Value in parenthesis is % mass 442.		
SAMPLE ID	LAB ID	DATE OF ANALYSIS	TIME OF ANALYSIS	
legymsvstd.	55012688A	1-26-88	0841	
HB I	5V4279MB1		0934	
5244	50427902		1124	
2246	57427903		1221	
2247	51427404		1313	
4258	· 5V427408		1407	
6243	SV427935	01/26/88	1027	
	51101135	Dijaujso	70017	
		<del>-</del>		
		David Total	De ditte	
		asumu	a auga up	
		1000/04		
		WALSHIR	man	
		( )		
			8811062011	
	Form V		<u> </u>	